SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Volk Alexander E.) ;pers:(Andersen Peter M.);pers:(Knehr Antje)"

Search: WFRF:(Volk Alexander E.) > Andersen Peter M. > Knehr Antje

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Brenner, David, et al. (author)
  • Hot-spot KIF5A mutations cause familial ALS
  • 2018
  • In: Brain. - : Oxford University Press. - 0006-8950 .- 1460-2156. ; 141, s. 688-697
  • Journal article (peer-reviewed)abstract
    • Heterozygous missense mutations in the N-terminal motor or coiled-coil domains of the kinesin family member 5A (KIF5A) gene cause monogenic spastic paraplegia (HSP10) and Charcot-Marie-Tooth disease type 2 (CMT2). Moreover, heterozygous de novo frame-shift mutations in the C-terminal domain of KIF5A are associated with neonatal intractable myoclonus, a neurodevelopmental syndrome. These findings, together with the observation that many of the disease genes associated with amyotrophic lateral sclerosis disrupt cytoskeletal function and intracellular transport, led us to hypothesize that mutations in KIF5A are also a cause of amyotrophic lateral sclerosis. Using whole exome sequencing followed by rare variant analysis of 426 patients with familial amyotrophic lateral sclerosis and 6137 control subjects, we detected an enrichment of KIF5A splice-site mutations in amyotrophic lateral sclerosis (2/426 compared to 0/6137 in controls; P = 4.2 x 10-3), both located in a hot-spot in the C-terminus of the protein and predicted to affect splicing exon 27. We additionally show co-segregation with amyotrophic lateral sclerosis of two canonical splice-site mutations in two families. Investigation of lymphoblast cell lines from patients with KIF5A splice-site mutations revealed the loss of mutant RNA expression and suggested haploinsufficiency as the most probable underlying molecular mechanism. Furthermore, mRNA sequencing of a rare non-synonymous missense mutation (predicting p. Arg1007Gly) located in the C-terminus of the protein shortly upstream of the splice donor of exon 27 revealed defective KIF5A pre-mRNA splicing in respective patient-derived cell lines owing to abrogation of the donor site. Finally, the non-synonymous single nucleotide variant rs113247976 (minor allele frequency = 1.00% in controls, n = 6137), also located in the C-terminal region [p.(Pro986Leu) in exon 26], was significantly enriched in familial amyotrophic lateral sclerosis patients (minor allele frequency = 3.40%; P = 1.28 x 10-7). Our study demonstrates that mutations located specifically in a C-terminal hotspot of KIF5A can cause a classical amyotrophic lateral sclerosis phenotype, and underline the involvement of intracellular transport processes in amyotrophic lateral sclerosis pathogenesis.
  •  
2.
  •  
3.
  • Mueller, Kathrin, et al. (author)
  • Comprehensive analysis of the mutation spectrum in 301 German ALS families
  • 2018
  • In: Journal of Neurology, Neurosurgery and Psychiatry. - : BMJ Publishing Group Ltd. - 0022-3050 .- 1468-330X. ; 89:8, s. 817-827
  • Journal article (peer-reviewed)abstract
    • Objectives Recent advances in amyotrophic lateral sclerosis (ALS) genetics have revealed that mutations in any of more than 25 genes can cause ALS, mostly as an autosomal-dominant Mendelian trait. Detailed knowledge about the genetic architecture of ALS in a specific population will be important for genetic counselling but also for genotype-specific therapeutic interventions.Methods Here we combined fragment length analysis, repeat-primed PCR, Southern blotting, Sanger sequencing and whole exome sequencing to obtain a comprehensive profile of genetic variants in ALS disease genes in 301 German pedigrees with familial ALS. We report C9orf72 mutations as well as variants in consensus splice sites and non-synonymous variants in protein-coding regions of ALS genes. We furthermore estimate their pathogenicity by taking into account type and frequency of the respective variant as well as segregation within the families.Results 49% of our German ALS families carried a likely pathogenic variant in at least one of the earlier identified ALS genes. In 45% of the ALS families, likely pathogenic variants were detected in C9orf72, SOD1, FUS, TARDBP or TBK1, whereas the relative contribution of the other ALS genes in this familial ALS cohort was 4%. We identified several previously unreported rare variants and demonstrated the absence of likely pathogenic variants in some of the recently described ALS disease genes.Conclusions We here present a comprehensive genetic characterisation of German familial ALS. The present findings are of importance for genetic counselling in clinical practice, for molecular research and for the design of diagnostic gene panels or genotype-specific therapeutic interventions in Europe.
  •  
4.
  • Oeckl, Patrick, et al. (author)
  • Different neuroinflammatory profile in amyotrophic lateral sclerosis and frontotemporal dementia is linked to the clinical phase
  • 2019
  • In: Journal of Neurology, Neurosurgery and Psychiatry. - : BMJ Publishing Group Ltd. - 0022-3050 .- 1468-330X. ; 90:1, s. 4-10
  • Journal article (peer-reviewed)abstract
    • Objective: To investigate the role of neuroinflammation in asymptomatic and symptomatic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) mutation carriers.Methods: The neuroinflammatory markers chitotriosidase 1 (CHIT1), YKL-40 and glial fibrillary acidic protein (GFAP) were measured in cerebrospinal fluid (CSF) and blood samples from asymptomatic and symptomatic ALS/FTD mutation carriers, sporadic cases and controls by ELISA.Results: CSF levels of CHIT1, YKL-40 and GFAP were unaffected in asymptomatic mutation carriers (n=16). CHIT1 and YKL-40 were increased in gALS (p<0.001, n=65) whereas GFAP was not affected. Patients with ALS carrying a CHIT1 polymorphism had lower CHIT1 concentrations in CSF (-80%) whereas this polymorphism had no influence on disease severity. In gFTD (n=23), increased YKL-40 and GFAP were observed (p<0.05), whereas CHIT1 was nearly not affected. The same profile as in gALS and gFTD was observed in sALS (n=64/70) and sFTD (n=20/26). CSF and blood concentrations correlated moderately (CHIT1, r=0.51) to weak (YKL-40, r=0.30, GFAP, r=0.39). Blood concentrations of these three markers were not significantly altered in any of the groups except CHIT1 in gALS of the Ulm cohort (p<0.05).Conclusion: Our data indicate that neuroinflammation is linked to the symptomatic phase of ALS/FTD and shows a similar pattern in sporadic and genetic cases. ALS and FTD are characterised by a different neuroinflammatory profile, which might be one driver of the diverse presentations of the ALS/FTD syndrome.
  •  
5.
  • Weydt, Patrick, et al. (author)
  • Neurofilament Levels as Biomarkers in Asymptomatic and Symptomatic Familial Amyotrophic Lateral Sclerosis
  • 2016
  • In: Annals of Neurology. - : Wiley. - 0364-5134 .- 1531-8249. ; 79:1, s. 152-158
  • Journal article (peer-reviewed)abstract
    • Neurofilaments are elevated in the cerebrospinal fluid (CSF) and serum of amyotrophic lateral sclerosis (ALS) patients. However, timing of this increase is unknown. To characterize the premanifest disease phase, we performed a cross-sectional study on asymptomatic (n=12) and symptomatic (n=64) ALS mutation carriers and family controls (n=19). Neurofilaments NF-L (neurofilament-light chain) and pNF-H (phosphorylated neurofilament-heavy chain) are normal before symptom onset and increased by at least an order of magnitude at early symptom onset in CSF (pNF-H) or serum and CSF (NF-L). Thus, blood and CSF neurofilament levels are linked to the symptomatic phase of ALS and might serve as objective markers of structural damage to the nervous system.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view